Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells.

نویسندگان

  • Patricia R Chess
  • Michael A O'Reilly
  • Fredrick Sachs
  • Jacob N Finkelstein
چکیده

Mechanical strain is necessary for normal lung growth and development. Individuals with respiratory failure are supported with mechanical ventilation, leading to altered lung growth and injury. Understanding signaling pathways initiated by mechanical strain in lung epithelial cells will help guide development of strategies aimed at optimizing strain-induced lung growth while mitigating ventilator-induced lung injury. To study strain-induced proliferative signaling, focusing on the role of reactive oxidant species (ROS) and p42/44 mitogen-activated protein (MAP) kinase, human pulmonary epithelial H441 and MLE15 cells were exposed to equibiaxial cyclic mechanical strain. ROS were increased within 15 min of strain. N-acetylcysteine inactivated strain-induced ROS and inhibited p42/44 MAP kinase phosphorylation and strain-induced proliferation. PD98059 and UO126, p42/44 MAP kinase inhibitors, blocked strain-induced proliferation. To verify the specificity of p42/44 MAP kinase inhibition, cells were transfected with dominant-negative mitogen-activated protein kinase kinase-1 plasmid DNA. Transfected cells did not proliferate in response to mechanical strain. To determine whether strain-induced tyrosine kinase activity is necessary for strain-induced ROS-p42/44 MAP kinase signaling, genistein, a tyrosine kinase inhibitor, was used. Genistein did not block strain-induced ROS production or p42/44 MAP kinase phosphorylation. Gadolinium, a mechanosensitive calcium channel blocker, blocked strain-induced ROS production and p42/44 MAP kinase phosphorylation but not strain-induced tyrosine phosphorylation. These data support ROS production and p42/44 MAP kinase phosphorylation being involved in a common strain-induced signaling pathway, necessary for strain-induced proliferation in pulmonary epithelial cells, with a parallel strain-induced tyrosine kinase pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells

Chess, Patricia R., Michael A. O’Reilly, Fredrick Sachs, and Jacob N. Finkelstein. Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl Physiol 99: 1226–1232, 2005. First published May 12, 2005; doi:10.1152/japplphysiol.01105.2004.— Mechanical strain is necessary for normal lung growth and development. In...

متن کامل

Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells.

Pulmonary epithelial cells are exposed to mechanical strain during physiological breathing and mechanical ventilation. Strain regulates pulmonary growth and development and is implicated in volutrauma-induced fibrosis. The mechanisms of strain-induced effects are not well understood. It was hypothesized that mechanical strain induces proliferation of pulmonary epithelial cells and that this is ...

متن کامل

Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor I in osteoblastic cells.

IGF-I is an endocrine and paracrine regulator of skeletal homeostasis, principally by virtue of its anabolic effects on osteoblastic cells. In the current study, we examined the intracellular signaling pathways by which IGF-I promotes proliferation and survival in SaOS-2 human osteoblastic cells. Inhibition of each of the phosphatidylinositol-3 kinase (PI-3 kinase), p42/44 MAPK, and p70s6 kinas...

متن کامل

Src and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells.

Pulmonary epithelial cells are exposed to repetitive deformation during physiological breathing and mechanical ventilation. Such deformation may influence pulmonary growth, development, and barotrauma. Although deformation stimulates proliferation and activates extracellular signal-regulated kinases (ERK1/2) in human pulmonary epithelial H441 cells, the upstream mechanosensors that induce ERK a...

متن کامل

H2O2-induced proliferation of primary alveolar epithelial cells is mediated by MAP kinases.

Exposure to supraphysiological oxygen concentrations during ventilatory oxygen therapy often causes tissue damage. Alveolar type II (AT II) cells are a major target for oxidant injury, and their ability to proliferate plays a critical role during the repair phase following injury. We hypothesized that reactive oxygen species (ROS), which are produced during hyperoxia, not only cause cellular da...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2005